鲁卡斯数列与变盘点测算
一、鲁卡斯数列与费波纳茨数列的关系
费波纳茨数列Fn:0、1、1、2、3、5、8、13、21、34、55、89、144、233……….
鲁卡斯数列…Ln:1、3、4、7、11、18、29、47、76、123、199、322……..
鲁卡斯数列的构成为相邻两费波纳茨数之和的集合,即Ln=Fn-1+Fn+1。
1876年鲁卡斯在研究一元二次方程POW(X,2)-X-1=0的两个根X1=(1+SQRT(5))/2,X2=(1-SQRT(5))/2时{1/X=X/(1-X)}得出了两个重要的推论结果:
Fn=(1/SQRT(5))*POW((1+SQRT(5))/2,n)-(1/SQRT(5))*POW((1-SQRT(5))/2,n)
Ln=POW((1+SQRT(5))/2,n)+POW((1-SQRT(5))/2,n)
注:SQRT(X)为X值开平方;POW(X,n)为X的n次方,因论坛格式无法写出平方和根号,故上式用分析家函数表达式代之。
方程1/X=X/(1-X)的正根,为无理数∮=(1+SQRT(5))/2≈1.618,即著名的黄金分割比。
由黄金分割比按0.38(∮平方分之一)的乘率递减求出的正方形,所作圆弧的连线,即黄金螺旋线。
螺旋线是宇宙构成的基本形态,也是股市起伏时间序的基本形态,而其本质的参数即是黄金分割比∮。
比较费波纳茨数列与鲁卡斯数列,对相邻两数的比值取n趋向无穷大的极限,比值趋向黄金分割比∮
Fn+1/Fn------->?∮
Ln+1/Ln------->?∮
因此,结论是两数列的本质是一致的,都与黄金分割比有着密切的关系。
二、嘉路兰螺旋历法的缺陷与鲁卡斯数列预测系统的产生
研究过嘉路兰螺旋历法的人知道,螺旋历法建立在嘉路兰的两点结论之上:
1、市场是人类买卖的场所,投资者的情绪与心理往往受到天体运行周期的影响,其中月球的影响最大;
2、当月球周期(即E=29.5306)的倍数是费波纳茨数的开方时,市场投资情绪可能出现逆转,而市场变盘。
由于嘉路兰的螺旋历法采用的是阴历的朔望月周期,变化速度慢,时间跨度大。因此,所预测的变盘点尽管包含在诸变盘点的集合内,但还是有许多变盘点被遗漏。根据嘉路兰螺旋历法的缺陷,国人王居恭先生提出并论证了,用鲁卡斯数列预测股市变盘点的方法。即用阳历太阳月周期的一半(二十四节气“节”到“中”的距离)15.21875日,与鲁卡斯数的开方之积。(亦即:当太阳月周期的一半的倍数是鲁卡斯数的开方时,市场可能出现变盘。)
Hn=SQRT(Ln)*15.21875
鲁卡斯数列预测变盘点系统的优点:
1、方法较之嘉路兰的螺旋历法简单;
2、网罗的变盘点即所有的变盘点。
缺点:不能单独确认变盘点的正确性,须与螺旋历法系统进行交叉验证。
上述两系统比较结果,可能存在的情况:两预测系统的螺旋线上,所预测的点相交;或不相交。有交点则此交点即可能是实际值;无交点,则取一系统的均值,与另一系统相比较,而选择其中之一。
三、时间窗
1、螺旋历法系统的时间窗
嘉路兰螺旋历法的变盘时间窗为,某变盘日起,此日之后的5、8、13、21、34、55、89、144、233……日,也可能发生变盘,计算日为起点日向后推算。
2、鲁卡斯自然律时间窗
鲁卡斯数决定的时间窗是固定日期,相似于阴历初一、十五、二十四节气之日,可能变盘。
经计算的Hn时间窗的积日为:
(5)(12)(17)(21)(73)(81)(110)(120)(145)(162)(184)(188)(203)(213)(255)(277)(292)(295)(316)(342)(353)
如果将积日换算成2001的日期,上述积日为
2001/1/5、2001/1/17、2001/1/21、2001/3/14、2001/3/22、2001/4/20、2001/4/30、2001/5/25、2001/6/11、2001/7/3、2001/7/7、2001/7/22、2001/8/1、2001/9/12、2001/10/4、2001/10/19、2001/10/22、2001/11/12、2001/12/7、2001/12/19。
将上述日期与已经发生过的走势对照,我们可以发现,2001年许多重要的转折点出现在上述的日期集合里(螺旋历法转折点定义为当日收盘价):
2001/1/5的2125.30点、2001/1/21的1909.33点、2001/4/20(实际数差三天,2001/4/17的2176.68点)、2001/6/11(实际数差两天、2001/6/13的2242.42点)、2001/10/22的1520.67点、2001/12/7(实际数差三天、2001/12/4的1769.68点)
通过上述论述,我们得出三点结论:
1、螺旋历法的时间窗作用,经市场长期论证已经得到证实。(空头教主的最爱)
2、鲁卡斯自然律时间窗网罗的变盘点,涵盖了所有重要的变盘点。
3、与螺旋历法一样,鲁卡斯预测法测算的变盘点亦会产生漂移。
因此,个人认为在使用两系统预测变盘点时,两者必须兼顾并相互论证筛选。计算所得出的日期的前后三天,应该列为重点观察的日期,提前作好心理准备总是好的。
四、2002年可能出现的变盘点测算
1、2002年以鲁卡斯自然律固定积日表换算的变盘日期
积日日期积日日期
(5)02/1/5/(188)02/7/7
(12)02/1/12(203)02/7/22
(17)02/1/17(213)02/8/3
(21)02/1/21(255)02/9/12
(73)02/3/14(277)02/10/4
(81)02/3/22(292)02/10/19
(110)02/4/20(295)02/10/22
(120)02/4/30(316)02/11/12
(145)02/5/25(342)02/12/7
(162)02/6/11(353)02/12/19
(184)02/7/3----
鲁卡斯数列与变盘点测算
一、鲁卡斯数列与费波纳茨数列的关系
费波纳茨数列Fn:0、1、1、2、3、5、8、13、21、34、55、89、144、233……….
鲁卡斯数列…Ln:1、3、4、7、11、18、29、47、76、123、199、322……..
鲁卡斯数列的构成为相邻两费波纳茨数之和的集合,即Ln=Fn-1+Fn+1。
1876年鲁卡斯在研究一元二次方程POW(X,2)-X-1=0的两个根X1=(1+SQRT(5))/2,X2=(1-SQRT(5))/2时{1/X=X/(1-X)}得出了两个重要的推论结果:
Fn=(1/SQRT(5))*POW((1+SQRT(5))/2,n)-(1/SQRT(5))*POW((1-SQRT(5))/2,n)
Ln=POW((1+SQRT(5))/2,n)+POW((1-SQRT(5))/2,n)
注:SQRT(X)为X值开平方;POW(X,n)为X的n次方,因论坛格式无法写出平方和根号,故上式用分析家函数表达式代之。
方程1/X=X/(1-X)的正根,为无理数∮=(1+SQRT(5))/2≈1.618,即著名的黄金分割比。
由黄金分割比按0.38(∮平方分之一)的乘率递减求出的正方形,所作圆弧的连线,即黄金螺旋线。
螺旋线是宇宙构成的基本形态,也是股市起伏时间序的基本形态,而其本质的参数即是黄金分割比∮。
比较费波纳茨数列与鲁卡斯数列,对相邻两数的比值取n趋向无穷大的极限,比值趋向黄金分割比∮
1/2 1 2 下一页 尾页