在天灾预测中,翁文波对天文学中的可公度性给予了特别关注。
翁文波认为,可公度性并不是偶然的,它是自然界的一种秩序,因而是一种信息系。可公度性不仅存在于天体运动中,也存在于地球上的自然现象中。
(一)元素周期表中的奥秘
元素周期表是门捷列夫等一批杰出的化学家探索自然奥秘的杰作,根据这个周期表,人们多次成功地预测和发现了新元素及它们的性质。可其中还存在被我们忽略的奥秘吗?
回答是肯定的。翁文波发现,可公度性存在于元素周期表中。
我们从元素周期表中取出前10个元素,它们的原子量用X(n)代替,如下:
氢X(1)=1.008氦X(2)=4.003锂X(3)=6.941
铍X(4)=9.02硼X(5)=10.811碳X(6)=12.011
氮X(7)=14.0067氧X(8)=16.000氟X(9)=18.998
氖X(10)=20.179
用可公度性“量”出它们具有如下一些关系:
X(1)+X(6)=13.019几乎等于X(2)+X(4)=13.015
X(1)+X(9)=20.006几乎等于X(2)+X(8)=20.003
X(4)+X(9)=28.010几乎等于X(6)+X(8)=28.011
几乎等于X(7)+X(7)=28.014
X(3)+X(8)=22.941约等于X(5)+X(6)=22.822
X(5)+X(10)=30.990约等于X(6)+X(9)=31.009
X(3)+X(7)=20.948约等于X(10)+X(1)=21.187
上述可公度式可用另外一种形式表示:
┼───────────────────────────────────┐
│氢X(1)=1.008│
│X(2)+X(4)—X(6)=1.012X(2)+X(8)—X(9)=1.005│
├───────────────────────────────────┤
│氦X(2)=4.003│
│X(1)+X(6)—X(4)=3.999X(1)+X(9)—X(8)=4.006│
├───────────────────────────────────┤
│锂X(3)=6.941│
│X(5)+X(6)—X(8)=6.822X(1)+X(10)—X(7)=7.180│
├───────────────────────────────────┤
│铍X(4)=9.020│
│X(1)+X(6)—X(2)=9.016X(6)+X(8)—X(9)=9.013│
│X(7)+X(7)—X(9)=9.015│
├───────────────────────────────────┤
│硼X(5)=10.811│
│X(6)+X(9)—X(10)=10.830X(3)+X(8)—X(6)=10.830│
├───────────────────────────────────┤
│碳X(6)=12.011│
│X(2)+X(4)—X(1)=12.015X(4)+X(9)—X(8)=12.018│
│X(3)+X(8)—X(5)=12.130X(5)+X(10)—X(9)=11.992│
├───────────────────────────────────┤
│氮X(7)=14.0067│
│X(4)+X(9)—X(7)=14.011X(6)+X(8)—X(7)=14.004│
│X(10)+X(1)—X(3)=14.246│
├───────────────────────────────────┤
│氧X(8)=16.000│
│X(1)+X(9)—X(2)=16.003X(4)+X(9)—X(6)=16.007│
│X(5)+X(6)—X(3)=15.881│
├───────────────────────────────────┤
│氟X(9)=18.998│
│X(2)+X(8)—X(1)=18.995X(6)+X(8)—X(4)=18.991│
│X(7)+X(7)—X(4)=18.993X(5)+X(10)—X(6)=18.979│┼───────────────────────────────────┤
│氖X(10)=20.179│
│X(6)+X(9)—X(5)=20.198X(3)+X(7)—X(1)=19.940│
└───────────────────────────────────┼
也就是说,每一个元素的原子量可由其它元素的原子量通过加、减运算推导出来(允许误差0.2),这种表达式,翁文波称之为可公度性的一般表达式。这个例子是用三个数据推导出一个数据,叫做三元可公度式,在另外一些例子中,存在五元、七元、九元等可公度式。
对沿海某地飓风海潮的预测
山东涞州湾之滨有个小镇,从1862年建镇以来居民们一直靠打鱼、晒盐为生,尤其是盐业,是小镇的主业,小镇因此也成了山东的主要产盐地。小镇生活总的来说安定详和。但镇民们有个心头之患,每隔若干年(短则四、五年,长则近20年),该地区就要爆发一次飓风海潮。
每当飓风海潮来临时,10级以上的东北风骤起,大潮汹涌而至,平地起水一至两米。飓风海潮的袭击,轻则使船毁房塌,重则威胁人的生命安全。如1939年8月31日爆发飓风海潮,当时仅700多户居民的小镇倒塌房屋数百间,毁船百余只,盐田几乎全部被淹,损失难以统计。
关于飓风海潮还有一个小故事。1922年12月,山东各地的盐商云集济南。由于各地盐田丰收在望,货源充足,加上人民生活贫困,盐价不高,生意并不好做。尤其是小盐商,多仰仗大盐商的收购。
来自小镇的陆某是个大盐商,看着清淡的盐市,他正在考虑收购小盐商的多少盐为妥。突然,他的家人从小镇发来一封电报,说涞州湾爆发飓风海潮,盐田大部分被淹。当时电报是非常希罕的,只有上层官员和个别巨商有条件拍电报。陆某看到电报,心中暗喜,但表面若无其事,对电报内容严加保密。
第二天,他对来自家乡盐商的盐一律优惠收购,并预付定金,签订契约,要求按时交货。小盐商对陆某感激不尽,急忙赶回小镇运盐。等回到家,哪里还有什么盐,只见到白汪汪的大水。
但契约已签,小盐商不得不等到第二年交货,但由于前一年的飓风海潮,第二年盐价猛涨,陆某因此大赚一笔。
这样的故事只能发生在70年前。今天,电话已进入寻常百姓家,电报成了逐渐被淘汰的通讯工具,少数人垄断信息的时代已经一去不复返了。并且,国家气象部门一般会提前48小时对飓风海潮发出预报。
但是,能不能提前几个月甚至几年对飓风海潮的来临时间作出预测呢?到目前为止,还没有人对飓风海潮作出超长期预测,但如果我们利用可公度性这把“尺子”去“量”一“量”一百多年来每次飓风海潮的来临时间,就会发现并非毫无规律。
根据当地水文站提供的资料,100年来该地区共发生飓风海潮9次(东北风9级以上,海潮高程3米以上,仅有飓风无海潮者不计,高程为黄海系),时间如下:
3/5 首页 上一页 1 2 3 4 5 下一页 尾页