斯梅尔是一个杰出的拓扑学家,本来在多维拓扑学的一些最奇特的问题上已经卓有成就。1958年,他开始对动力系统的微分方程进行深入研究,并发表了一篇过于乐观的论文。他在这篇论文里提出了一个错误的猜想。他用极为严谨的数学语言论证说,一切动力系统最终都将进入一个并不十分奇异的行为;或者说,典型的动力学行为是定态的或周期的。虽然,一个动力系统可能会出现离奇古怪的性态,但斯梅尔认为这种性态不会是稳定的。后来斯梅尔曾回忆说:“我的过分乐观引导我在那篇论文里认为,几乎所有常微分方程系统都是这样一些(结构稳定的)系统!”他说如果他多少了解些庞加莱、伯克霍夫等人的文献,他就不会有那种愚蠢的思想。
1959年圣诞节后,斯梅尔一家正在巴西首都里约热内卢暂住,他接到了他的朋友莱文松(Levinson,N.)的一封信,指出他的猜想是错误的,并告诉他自己关于受迫范德坡方程的研究已经提供了一个反例。早在本世纪20年代,德国物理学家范德坡(VanderPol,B.)就已开始研究非线性电路的弛豫振荡问题,并得出了以他的名字命名的范德坡方程和受迫范德坡方程。1927年,范德坡又和范德马克(VanderMark,J.)发现了著名的“分频”现象。莱文松用这个反例说明,一个系统既有混沌又有稳定性,混沌与稳定性共存;系统的这种奇特性质并不为小的扰动所破坏。
当斯梅尔仔细研究了莱文松的文章,最后确信莱文松是对的时,他就把自己的猜想换成了另一个问题:典型的动力行为是什么?斯梅尔多年来是在拓扑学中进行探索的,他利用相空间对范德坡振子的全程可能性进行探索。他注意的并不只是单条的轨线,而是全空间的性态;他的直觉由这系统的物理本质跃进到一种新型的几何本质。他思考的是形状在相空间中的拓扑变换,例如拉伸或压缩变换。这些变换有明确的物理意义。如系统中的耗散,由于摩擦而丧失能量,意味着系统在相空间中的形状将会收缩,甚至可能最终完全静止下来收缩到一点。为了反映范德坡振子的全部复杂运动性态,他想到相空间必须经历一种新的变换组合。这使他从观察振子的总体行为提出了一种几何模型——“斯梅尔马蹄”。
斯梅尔马蹄的道理很简单。取一个正方形,把它拉伸为瘦长的矩形,再把它对折弯叠成马蹄形(图7)。然后想象把这马蹄嵌入一个新的矩形中,再重复相同的变换:挤压、折曲、拉伸……
这实际上就像厨师揉面团的操作过程:首先是伸缩变换,使面团在一个方向擀平压薄,同时在另一个方向上伸长;然后是折叠变换,将拉长的两块面对折叠置。这种操作反复进行下去。可以设想,开始时先在面团上擦一层红颜色,那么在厨师揉面过程中,红色层将被拉长、变薄、交叠起来。经过多次反复操作后,原来相邻近的两个红色粒子会越来越远地分离开去,原来不相邻近的两个红色粒子却可能越来越靠近了。
动力系统正是通过这两种变换而形成浑沌轨道几何图象的复杂性的。伸缩变换使相邻状态不断分离而造成轨道发散。但仅有伸缩变换还不足以扰乱相空间造成复杂性,还必须通过折叠变换。折叠是一种最强烈的非线性作用。伸缩和折叠的混合并不断反复,才可能产生动力系统相轨道的分离、汇合,产生无可预见的不规则运动。在混沌区内,相空间中的伸缩与折叠变换以不同的方式永不停息又永不重复地进行,从而造成了相轨道永不自交又永不相交的穿插盘绕、分离汇聚,完全“忘掉了”初始状态的一切信息,“丢弃了”未来与过去之间的一切联系,呈现出混沌运动。这就是系统长期行为对初值的敏感依赖性的源由。
本来,斯梅尔企图只用拉伸与挤压去解释一切动力系统的行为,而不用会大大损害系统稳定性的折叠变换。但是折叠是必要的,因为折叠使动力系统的行为有动力性态上的根本变化,是导致混沌的一种重要作用。斯梅尔马蹄给数学家和物理学家提供了一个对动力系统运动的可能性的直观理解的几何图象。
3/3 首页 上一页 1 2 3