S = mean(d)/standard_deviation(d) ... the Sharpe Ratio, 而
d = Rf - Rb ... the differential return, 而
Rf - 基金报酬率
Rb - 基准报酬率
夏普指标的变形不断出现。其中一种变形舍弃了基准点,将它设为零。另一个,基本上就只是夏普指数的平方,但它使用获利的变异数,而不是标准差。 在使用夏普指标上,一个重要的考虑是它并未将上方下方变动率加以区分。高杠杆高绩效的系统,必然有很大的上方变动率,在这标准下也变得不太好了 。
VaR,或称风险承担价值,是另一种衡量投资组合风险的方法。基本上它只测量最大净值下降百分比,这种情况很久才会发生一次,机率约95%。VaR的缺 点是,(1)历史的计算结果只能提供大概值 (2)还是有5%的机率超过预期。净值下降产生的信心问题多半在非预期中发生,VaR也就无法真正预测它真正 想要解决的状况了
心理面的考虑
在实际操作上,最重要的心理考虑就是坚守系统的能力。要达到这个目标,必须(1)全然了解系统的规则 (2)了解系统行为 (3)在所有参与者中,找到清楚的共识,能够坚守系统的共识。
例如,就我们刚所说的,获利和亏损不见得会平稳的交换出现,通常来说都是一串赢的,一串输的。当一组投资人-管理者团队都了解到这是正常的,在 净值降低时坚守系统的可能性就大增,赚大钱的时候也会比较谦虚谨慎。
除此之外,研讨会,心灵支持团体都有助于保持一贯的态度,让组织里上下都能照计划进行。
补充:
假设一个人全胜,P=1,也就是说从kelly方程来讲就是全额投注,这是一个危险的理论值;实际上,我们的操作不可能达到100%的胜率。但是p=1有还是有一个启发的地方,在博彩领域长期而言相对于博彩公司,彩民们的长期赔率正是0.9附近,即返回率。也就是说,博彩公司拥有全局方面获得0.1佣金的优势。但对于个体,如果自己操作得当,有可能维持在高获胜概率,这个时候个人的一点想法是随着获胜概率的提高,所采用的p应该增大博彩公司所开出赔率的考虑因素,p应该是跟个人操作和赔率所蕴含p有关,前面我们已经提到,p不仅跟个人有关,也更理论上的胜率有关,两者之间需要权衡。假定P=f(p1,p2),其中p为kelly中要采用的概率,p1为个人胜率,p2为理论胜率,P应该是这两者加权平均,并且其权重存在反比关系为妥,能够使得个人胜率的回归理论胜率一以此来降低个人操作方面的风险这个是由于我们的个人操作中会存在一些隐性假设所引发的,规避这样的风险使得不至于在风险发生时损失过大,值得我们关注;个人正在试验,不知是否还会满足kelly方程的特性,让我们共同关注和测试
例如,如果我们采用简单权重平均,对于180赔率的比赛,个人的操作得当,使得胜率达到80%,这个时候建议在kelly中要采用两者的平均值,比方说采用个人的80%和理论的50%的平均数,以此来降低风险。
7/7 首页 上一页 5 6 7