资金管理的数学解决方法

2011-06-21 08:45:00

赌注加倍(Martingale)的意思是在赌输时加倍下注。如果又输,则再加倍,如此一直下去。这种方式好比赶在压路机前捡硬币,只要一次失手,资本就完蛋。

最佳化-使用模拟测试

一旦我们选定了一个下注系统,例如固定比例下注系统,我们就能依系统找出最佳化的参数(Parameters),得到最好的期望值(Expected Value)。在丢铜板的例子中,我们唯一的参数就是那个固定比例。再次重申,我们可以经由模拟测试找到答案。

请注意,丢铜板的例子的用意在于强调风险的某些元素,以及它们之间的关系,特别是我们的例子是报酬2:1,胜率50%。这个例子没有考虑正反面不均匀的情况,也没有考虑一连串的正面或反面。它的用意并非在建议任何市场交易里风险管理的参数

%时,资本不会改变。在5%时,赌注是资本$1000.00的5%,也就是$50.00。第一次期望值是$1,100,以灰色部份表示。第二次的赌注一样是资本的5%,$55.00,这次我们会输,剩下$1,045.00。请注意,在赌注为25%时,表现最好,以红色部份表示。再请注意,最佳化参数(25%) 在一次正反面周期后就很明显了。这让我们能够以单一周期求得最佳化参数。

请注意,系统的期望值在25%下注比例时,从$1000.00提高到最大值$1,800。从这之后,随着提高下注比例,获利减少。这条曲线表示了两个表达了两个风险管理的根本法则,(1) 胆小交易者法则:如果你下的注不够大,你的获利也不会大。 (2)鲁莽交易者法则:如果你下的注太大,破产是必然的。 在具有多个部位,多个赌注的投资组合中,总风险我们称之为投资组合热度(Heat)。

这个图同时说明了在报酬为2:1的情形下,期望值和下注比例的关系。这样的关系在不同报酬的情况。

最佳化-使用微积分

因为我们的丢铜板游戏满简单的,我们也可以用微积分求最佳下注比例。因为我们知道,最佳系统在一次正面和反面的周期后就是显而易见的了,我们也可以用一个正面一个反面的周期,来简化问题。

一正一反的组合后,赌注变成:

S = (1 + b*P) * (1 - b) * S0

S - 一个周期后的赌注

b - 下注比例

P - 报酬2:1

S0 - 一个周期前的赌注

(1 + b*P) - 赢时的影响

(1 - b) - 输时的影响

所以,一个周期后的影响就是:

R = S / S0

R = (1 + bP) * (1 - b)

R = 1 - b + bP - b2P

R = 1 + b(P-1) - b2P

注意,b值很小时,R随着b(P-1)的增加而增加;b值很大时,R随着b2P而减小。这就是胆小交易者、鲁莽交易者法则背后的数学意义。

我们可以画一张图显示R和b之间的关系,这张图看起来会很像我们从模拟的结果,以目测选择最大值。我们也可以观察到,最大值时斜率为零,所以我们也可以令斜率为零,即可求最大值。

Slope = dR/db = (P-1) - 2bP = 0, 于是

b = (P-1)/2P , and, for P = 2:1,

b = (2 - 1)/(2 * 2) =0 .25

所以最佳化的下注比例就是资金的25%。

最佳下注比例随着胜率而增加,趋近报酬。

这张图显示在不同的胜率和报酬下的最佳下注比例。最佳下注比例随着酬酬的增加而增加。对于很高的报酬率时,最佳下注比例等于胜率。举例来说,一个5:1报酬的公平铜板,最佳化下注比例趋近于50%。

过程中的期望值和最佳下注比例

几乎确定会毁灭的策略

全押,本质上来说是几乎确定会毁灭的策略。因为对一个公平的铜板来说,存活的机率,变成(.5)N,N表示丢铜板的次数。十次铜板之后,存活的机率大约是千分之一。大部份的交易者当然不想破产,所以就不会采用这样的策略。但是,这种策略的期望值真的很诱人。在毁灭只代表资产的损失时,我们会想要找到这样的系统。

例如,一个将军管理着好多可有可无的士兵。他也许会让士兵全部上场,全面攻坚,不考虑士兵会不会死掉。用这样的战术,将军也许会失去很多士兵,但也许会有一两个士兵攻坚成功。整体上来说,任务成功的机率就大增。

相同的,一个投资组合管理者也许会把资本分散在许多账户中,然后赌上每个账户里100%的资本。他想,他也许会输掉很多账户,但有些账户的胜利势必可以使整体的期望值最大化。这就是风险分散(Diversification)的原则。当个别的报酬率非常高时适用。

风险分散

风险分散就是把资金分散到很多不同的投资工具,单一投资工具失败时,损失得以限制。这样的策略必须符合「所有部位平均起来有获利期望值」这样的 条件。比较起单一投资工具,风险分散也提供心理上的好处。短期内投资的变动,可以由不同投资工具间的成果抵消,而获得较为平滑的投资组合变动率 。

The Uncle Point

从分散的投资组合的观点,个别投资工具组合成为总合的绩效。就风险管理者或基金投资人来说,基金的表现就成了注意力的焦点。基金的表现,也会受 上述两种人的感觉、态度、还有投资者对个别股票态度上管理者的态度所影响。

基金管理中最重要的,也许也是最不受注意的观点,就是Uncle Point。它的意思是净值水平降低,引发投资者或管理者信心丧失的那个点。如果投资人或管理者失去信心而进行赎回,那基金就 宣告死亡。正因Uncle Point发生时的环境通常是很灰心气馁的,很少文献对这个现象有详尽的记载。

尤其是当基金在安全范围里的时候,除了法律文件里必要但却含糊的贴示外,没什么人会注意Uncle Point。在Uncle Point认知上的不协调可以导致其中一方的放弃,说起来也很不幸,明明另一方要的只是再次保证。

当压力真的很大的时候,投资人和管理者不会去看那个看也看不懂的法律文件,他们会看的是自己够不够胆。在净值常常降低,高表现,高变动率的创业 界尤其重要。

若双方对Uncle Point没有清楚的共识,风险管理者往往必须假设Uncle Point就在不远处,于是他们寻找降低变动率的方法。如同我们上面所看到的,低变动率系统很少能有最好的获利。然而压力和紧张局势使得对于变动率的 侦查和处罚变成必要。

测量投资组合的变动率(Sharpe, VaR, Lake Ratio and Stress Testing)

从分散投资组合的观点,个别投资工具的成败总合成为整体绩效的一部份。投资组合管理者依赖一整套测量基金表现的工具,例如Sharpe Ratio,VaR,Lake Ratio以及Stress Testing。

威廉夏普先生在1966年提出了他的「报酬-变动率比」。经过长时间,它成为我们所熟知的Sharpe Ratio。Sharpe Ratio利用对变动率调整绩效的方法,提供了比较不同绩效不同变动率投资工具间比较的标准。

 承诺与声明

兄弟财经是全球历史最悠久,信誉最好的外汇返佣代理。多年来兄弟财经兢兢业业,稳定发展,获得了全球各地投资者的青睐与信任。历经十余年的积淀,打造了我们在业内良好的品牌信誉。

本文所含内容及观点仅为一般信息,并无任何意图被视为买卖任何货币或差价合约的建议或请求。文中所含内容及观点均可能在不被通知的情况下更改。本文并未考 虑任何特定用户的特定投资目标、财务状况和需求。任何引用历史价格波动或价位水平的信息均基于我们的分析,并不表示或证明此类波动或价位水平有可能在未来 重新发生。本文所载信息之来源虽被认为可靠,但作者不保证它的准确性和完整性,同时作者也不对任何可能因参考本文内容及观点而产生的任何直接或间接的损失承担责任。

外汇和其他产品保证金交易存在高风险,不适合所有投资者。亏损可能超出您的账户注资。增大杠杆意味着增加风险。在决定交易外汇之前,您需仔细考虑您的财务目标、经验水平和风险承受能力。文中所含任何意见、新闻、研究、分析、报价或其他信息等都仅 作与本文所含主题相关的一般类信息.

同时, 兄弟财经不提供任何投资、法律或税务的建议。您需向合适的顾问征询所有关于投资、法律或税务方面的事宜。