p1=1/(1/o1+1/o2+1/o3)/o1
p2和p3的计算也是这样的公司,可能有一些用的是101体系,那就把公式中的一些1该为1.01就是了。很显然,这个公式计算出来的p乘以o的值也是小于1的;但是这个p是不是没有作用?后面我们来看看。
所以我觉得还是需要有某种方法来计算比较公平的p的,事实上很多数据模型能够提供这样的数据,比如说elo模型,比如说很多基于possion公式的模型,都能够提供一个比较反应静态实力的概率,而许多基础数据,则能够从免费的网站获得,问题是这个获得p是否能够有限的应用在kelly方程呢,不是的,让我们来看看有个老外写的文章里面的研究事实,他自己建立的一个模型来计算p,是基于possion公式的,然后采用不同的投注策略得到:
Margin Fixed% Kelly% 1/2Kelly%1/4Kelly% # of bets
1.1 94.23% 15.95% 61.49% 81.93% 712
1.2 94.44% 34.03% 70.05% 85.26% 346
1.3 96.84% 106.74% 105.02% 96.75% 174
1.4 99.63% 213.85% 156.68% 128.27% 87
1.45 100.53% 248.74% 175.36% 137.88% 72
1.5 101.09% 235.71% 167.97% 134.01% 51
1.6 101.67% 175.13% 137.65% 118.85% 28
1.7 102.07% 170.87% 136.05% 118.15% 23
上面是欧洲四大联赛和英甲等的统计数据,上面的数据数据里面,margin就是通过1/o1+1/o2+1/o3的计算值,我们可以清楚的看到,采用不同的投资策略下的收益是不一样的,收益低于100%意味着什么呢?意味着亏损,从上面的统计实例我们可以看到,博彩公司开出的赔率里面,如果按照严格的统计规律来进行的话,投注者基本上是亏损的-这也是博彩公司抽水所导致的。而在我们最为常见的1.1庄家利润期望值的赔率体系中,kelly方程式是亏损得最为厉害的。我想这个是大大出乎我们所有人的意料的吧。这个也说明,不要以为只有我们在研究投资策略,其实博彩公司应该是比我们更加精通这个东西,毕竟,我们所看到的,庄家的期望值高于1.3也是很少。
上面的数据表明我们还是需要对比赛进行选择,从而提高这个P的值的,如何选择比赛,kelly方程并不能够告诉我们什么,但是,我想,我们上面的分析已经告诉我们,怎么样去发觉一些比较可靠的比赛,这也是为什么我认为庄家的赔率仍旧对P产生影响的一个重要原因。
接下来为大家奉上一篇风险管理的文章作为参考,文章是Ed Seykota所写的,我进行了一些节选:
风险管理总结
一般来说,好的风险管理者包含下列要素:
阐明交易系统和风险管理系统,直到可以转化为程序代码为止。
包含风险分散和投资工具选择,再做好历史测试。
历史测试和压力测试决定交易参数敏感性以及最佳化数字。
所有参与者,对于变动率和获利率,有清楚的共识。
投资人和管理者之间,维持具有支持作用的关系。
最重要的是,坚守系统。 ]
风险
风险的意义是损失的可能性。也就是说,如果我们拥有一些股票,这些股票价格有下跌的可能性,那么我们就具有风险。股票本身不是风险,损失也不是风险,损失的可能性才是风险。只要我们一天还拥有这些股票,我们就具有风险。控制这些风险的唯一方式就是买进或卖出股票。就拥有股票,想赚取利润这件事来说,风险基本上是无可避免的。我们所能做的,就是管理风险。
风险管理
管理的意思是引导和控制。风险管理在于指引导及控制损失的可能性。风险管理者的任务即在于测量风险,并买进或卖出股票以增加或减少风险。
直觉和系统
直觉(Hunch)是一种决定赌注的方式。也许我们预感要押$100。
虽然以直觉来决定赌注确实是现实世界里最多人用的方式,它还是有几个问题。它需要一个操作者特续的产生这些预感来决定赌注,把这些预感转为实际的赌注。比较起科学方法来说,这些赌注更仰赖心情和感觉。
要改善以直觉来下注的方式,我们可以使用一套系统。系统的意思是一套逻辑化的方法,来规定一连串的赌注。比较这两种方法,系统的好处在于(1) 我们不需要操作者 (2)赌注变得有规律,可预期,前后一致,而非常重要的是 (3)我们能够在计算机上执行历史数据的仿真,将下注
系统最佳化(Optimize)。
虽然一般来说系统的好处很明显,实际上风险管理者却很少清楚定义他们的系统,足以在计算机上进行回溯测试。
我们丢铜板的例子满简单的,我们可以帮它准备一个下注系统。此外,我们可以藉此测试这些系统,找出系统的最佳参数,以便执行最佳化的风险管理。
固定赌注以及固定下注比例
我们的下注系统必须定义赌注。定义赌注的其中一个方法是使用固定金额,例如每次下注$10,不管我们输还是赢。这种就叫做固定赌注(Fixed Bet)。在这个情况下,我们$1,000的资本可能会减少或增加,一直到$10比例上会变得太大或太小,而变成不是最好的赌注了。
要解决固定赌注中资本变动的问题,我们可以定义固定下注比例(Fixed-Fraction)。在我们的资本中,1%的赌注等于$10。这次,不管我们的资本上升或下降,固定下注比例都会和资本成比例。
由固定下注比例我们发现一个有趣的事情,既然赌注和资本保持一定的比例,理论上来说完全破产不可能,形式上毕业出场的风险是零。在实务上,崩溃和心理上的 Uncle Point 比较有关系,参照下文
模拟测试
我们可以针对历史数据进行仿真测试(Simulate),以便测试我们的下注系统。假设我们丢十次铜板,有五次正面五次反面,我们可以如图二般安排模拟测试。
请注意,两个系统第一次都赚了$20.00(赌注的两倍),开出来的是正面。第二次,固定赌注的系统输了$10.00,而固定比例系统输了1%,也就是$1,020.00的1%,也就是$10.20,资本剩下 $1,009.80。
两种系统跑出来的结果几乎没什么不同。然而经过长时间后,固定比例系统会以几何级数成长,超越以线性成长的固定赌注系统。另外,系统的结果取决于正反面的个数,至于正反面的顺序并不会影响结果。读者可以自行以电子表格进行测试
金字塔型加码(Pyramiding)以及赌注加倍(Martingale)
如果过程是随机的,像是丢铜板,规律的正反顺序是不可能的,因此会发生一连串的正面或反面的状况。然而,我们无法利用这个现象获利,因为它的本质就是随机的。在非随机的过程中,例如股票价格的趋势,金字塔型加码或是其它趋势追踪技巧都可能有用。
金字塔型加码,是在获利时加码的一种方式。这个技技有助于交易者加码至最佳化部位。在已最佳化的部位之上加码只会引起过度交易的灾难。一般来说,这种系统的小修小补对系统来说,远远不如坚守系统来得重要。事实上,这样的修修补补使交易者对系统的信号产生诠释的空间,可能导致直觉化的交易,徒然削弱坚守系统的努力罢了。
5/7 首页 上一页 3 4 5 6 7 下一页 尾页