九正一反0.01**********
八正二反0.044*****(45种不同方式)
七正三反0.117*****(120种不同方式)
六正四反0.205*****(210种不同方式)
五正五反0.246*****(252种不同方式)
四正六反0.205*****(210种不同方式)
三正七反0.117*****(120种不同方式)
二正八反0.044*****(45种不同方式)
一正九反0.01**********
零正十反0.001*
注意:随着硬币数的增加,全部得到正面或全部得到反面的概率将减小。当我们用两枚硬币时,全部得到正面或全部得到反面的概率为0.25。三枚硬币的概率为0.125,四枚硬币的概率为0.0625;六枚硬币为0.0156,十枚硬币为0.001。
(注)实际上,在纯粹的统计学意义上,抛硬币并不服从正态概率函数,而是属于一种所谓的二项分布(亦称为伯努利分布或抛硬币分布)。然而,随着N的增大,二项分布的极限接近于正态分布(条件是相关概率不趋向于0或1)。这是因为正态分布是自右至左连续的,而二项分布则不是连续的,而且,正态分布总是对称的,而二项分布则不一定是对称的。因为我们处理的是抛有限枚硬币,试图使之对于抛硬币具有普遍的代表性,加之概率总是等于0.5,故此,我们可将抛硬币分布作为正态分布处理。需要进一步指出的是,如果事件发生N次的概率与对立事件发生N次的概率均大于0.5,正态分布可以被用作二项分布的近似。在我们抛硬币的例子中,因为事件的概率为0.5(对于正面或反面),且对立事件的概率为0.5,则,只要我们处理的是N大于等于11的情况,我们就可以用正态分布作为二项分布的近似。
可能结果与标准差(POSSIBLEOUTCOMESANDSTANDARDDEVIATIONS)
把一枚硬币抛四次共计有16种可能的实值序列:
1.正正正正
2.正正正反
3.正正反正
4.正正反反
5.正反正正
6.正反正反
7.正反反正
8.正反反反
9.反正正正
10.反正正反
11.反正反正
12.反正反反
13.反反正正
14.反反正反
15.反反反正
16.反反反反
术语“实值序列”在这里表示一个随机过程的实际结果。给定条件下所有可能的实值序列的集合被称为样本空间。注意:上面所描述的抛四枚硬币可以是一次抛所有四枚硬币,或者是一枚硬币抛四次(即,它可以是一个时间序列)。
审视一下实值序列“反-正-正-反”和序列“正-正-反-反”,我们会发现其结果对于单调下注者(即,对每一种场合下一个单位的赌注)可能一样的。不过,对于非单调下注者,这两个实值序列的最终结果可能会大不相同。对于单调下注者,抛四枚硬币的序列仅有5种可能的结果:
4正
3正1反
2正2反
1正3反
4反
正如我们已看到的,抛四枚硬币有16种可能的实值序列。这一事实可能会涉及到非单调下注者。我们将非单调下注者称为“系统”游戏者,因为那是他们最可能的行为----基于某些他们认为自己已解决的方案进行变量下注。
如果你抛一枚硬币4次,你当然只能看到16种可能的实值序列中的一种。如果你再抛4次,你会看到另一种实值序列(尽管你有1/16=0.0625的概率能够看到同一种实值序列)。如果你前往一个游戏桌观看连续抛4次硬币,你将只看到16种实值序列中的一种。你也会看到5种可能的最终结果中的一种。每个实值序列具有相等的发生概率,即0.0625。但是,每个最终结果并不具有相等的发生概率:
最终结果概率
4正0.0625
3正1反0.25
2正2反0.375
1正3反0.25
4反0.0625
大多数人不理解实值序列与最终结果之间的区别,结果是得出错误的结论,认为实值序列与最终结果是同一回事。这是一种可能会带来大量麻烦的共有的误解。是最终结果(而非实值序列)服从钟形曲线----即正态分布,一种特殊类型的概率分布。所有概率分布一个有趣的特性就是统计学上所称的标准差。
对于简单的二项游戏的正态概率分布(比如我们这里所用的抛硬币的最终结果),标准差(SD)为:
SD=N*(((P*(1-P))/N)^(1/2))
其中,P=事件的概率(例如,出现正面的结果)。
N=试验次数。
对于抛10枚硬币的情况(即,N=10):
SD=10*(((0.5*(1-0.5))/10)^(1/2))
=10*(((0.5*0.5)/10)^(1/2))
=10*((0.25/10)^(1/2))
=10*(0.025^(1/2))
=10*0.158113883
=1.58113883
某种分布的中线为这种分布的峰值。在抛硬币的例子中,峰值位于正面和反面的平均数处。因此,对于抛10枚硬币的序列,中线将位于5个正面5个反面处。对于正态概率分布,大约有68.26%的事件位于自中线±1个标准差区域内,有95.45%的事件位于自中线±2个标准差区域内,有99.73%的事件位于自中线±3个标准差区域内(见图1-2)。继续我们的抛10枚硬币的话题,1个标准差大约等于1.58。因此,我们可以说,抛10枚硬币有68%的机会我们可以预期由3.42(5-1.58)至6.58(5+1.58)组成的最终结果为正面(或反面)。因此,如果我们得到7个正面(或反面),我们将位于预期结果的1个标准差之外(预期结果为5个正面或5个反面)。
图1-2正态概率函数:中心线及其两侧两个标准差
这里还有一个有趣的现象。注意:在我们抛硬币的例子中,随着抛硬币次数的增加,均等得到正面反面的概率在减小。对于两枚硬币,得到正1反1的概率为0.5。对于4枚硬币,得到50%的正面50%的反面的概率降至0.375。对于6枚硬币为0.3125,对于10枚硬币为0.246。因此我们可以说,随着事件数的增加,最终结果实际等于预期值的概率在减小。
数学期望是我们预期平均每次下注所赢得或输掉的结果。然而,它并没有解释两次下注之间的波动。在我们抛硬币的例子中,我们知道抛一枚硬币出现正面或反面的概率为50/50。我们预期经过N次试验,大约有(1/2)*N抛掷将出现正面,(1/2)*N抛掷将出现反面。假定我们输时会输掉赢时所赢得的相同数量,我们可以说,不管N有多大,我们的数学期望均为0。
我们也知道,大约有68%的机会我们将位于期望值的±1个标准差之内。对于10次试验(N=10),这表示我们的标准差为1.58。对于100次(N=100)试验,这表示我们的标准差的大小为5。对于1000次(N=1000)试验,标准差大约为15.81。对于10000次(N=10000)试验,标准差为50。
N(试验次数)StdDev(标准差)StdDev/N(%)
101.5815.8%
10055.0%
100015.811.581%
10000500.5%
注意:随着N的增加,标准差也增加。这意味着与通常的信念相反,你赌得越久,你就离自己的期望值(以单位赢利或亏损表示)越远。不过,随着N的增加,标准差与N的百分比在减小。这意味着你赌得越久,你就越接近于你的期望值与全部行为(N)的百分比。这是“平均法则”正确的数学形式。换句话说,如果你进行长期的连续下注N,这里,T等于你的总赢利或总亏损,E等于你的期望赢利或期望亏损,则,随着N的增大,T/N趋近于E/N。另外,E和T之间的差异随着N的增大而增大。
6/8 首页 上一页 4 5 6 7 8 下一页 尾页