始于2008  原始点差  不加佣金。
十七年信誉保障
零起付:0.01美元返佣也可以支付到账。
随时付:随时提现,无周期或次数限制。
免费付:不扣任何手续费,全额到账。
2011-10-13 09:07:50
我们可将随机过程分为两种类型。第一种是那些一个事件到下一个事件的概率陈述固定不变的事件。我们将这些称为独立试验过程或放回抽样。掷硬币就是这种随机过程的一个例子。不管前一次抛掷的结果如何,每次抛掷的概率都是50/50。即使前5次抛硬币都出现正面,再抛一次硬币出现正面的概率并不受影响,仍然是0.5。
在另一种随机过程中,事件的概率陈述必然受到前一事件结果的影响,自然,一个事件到下一个事件的概率陈述不是固定不变的。这种类型的事件被称为条件试验过程或不放回抽样(samplingwithoutreplacement)。二十一点牌戏就是这种随机过程的一个例子。一旦出过一张牌,这副牌的组成在抽下一张牌时就与抽上一张牌时不同。假定一副新牌已经洗过并拿走一张牌,比方说,拿走的是方块A。在拿走这张牌之前,抽出一张A的概率是4/52或0.07692307692。既然已经从这副牌中抽出一张A而且不放回,那么,下一次抽出一张A的概率就是3/51或0.5882352941。
有些人认为,上面这样的条件试验过程实际上并非随机事件。尽管如此,为了我们讨论问题,我们假定它们是随机事件----因为事件的结果仍然无法预先知道。最好的做法就是把结果简化为概率陈述。设法将独立试验过程和条件试验过程之间的区别考虑为仅仅在于,根据前面的结果,一个事件到下一个事件的概率陈述是固定的(独立试验)还是可变的(条件试验)。实际上,这是它们之间唯一的区别。
任何事件都可以简化为概率陈述。从数学的观点来看,结果可以在事实之前知道的事件与随机事件的区别仅仅在于其概率陈述等于1。例如,假定从一副52张的牌中拿走51张牌,而且你知道拿走的是哪些牌。因此,你知道剩下的那张牌是什么的概率为1(确定性)。现在,我们要讨论独立试验过程,尤其是简单的抛掷硬币。
数学期望(MATHEMATICALEXPECTATION)
在这个问题上,我们需要理解数学期望的概念。数学期望有时也称为游戏者胜出(对游戏者来说期望为正)或庄家占优(对游戏者来说期望为负)。
数学期望=(1+A)*P-1
其中,P=赢的概率
A=可能赢得的金额/可能输掉的金额
因此,如果你正要抛掷一枚硬币,出现正面你会赢得2美元,但出现反面你会输掉1美元,每抛一次的数学期望为:
数学期望=(1+2)*0.5-1
=3*0.5-1
=1.5-1
=0.5
换句话说,每抛一次硬币你预期平均赢得50美分。
这个刚刚描述的公式给出了有两种可能结果的事件的数学期望。有两种以上可能结果的条件下又当如何?下面的公式将给出结果为无限可能情况下的数学期望。它也能给出只有两种可能结果的事件(比如刚才描述的2对1抛硬币)的数学期望。因此,这个公式是优先的。
数学期望=
其中,P=赢或输的概率
A=赢或输的金额
N=可能结果的数目
数学期望的计算是将每种可能的赢或输的金额分别与赢或输的概率相乘,然后对乘积求和。
现在,我们来看在更复杂的新公式中2对1掷硬币的数学期望:
数学期望=(0.5*2)+(0.5*(-1))
=1+(-0.5)
当然,在这个例子中,你的数学期望是每抛一次平均赢得50美分。
假定你在玩一种游戏,你必须猜中三个不同数字中的一个。每个数字出现的概率相同(0.33),但是,如果你猜中其中一个数字,你会输掉1美元,如果你猜中另一个数字,你会输掉2美元,如果你猜中正确的数字,你会赢得3美元。这种给定情况的数学期望(ME)为:
ME=(0.33*(-1))+(0.33*(-2))+(0.33*3)
=-0.33-0.66+0.99
=0
考虑对轮盘赌中的一个数字下注,你的数学期望为:
ME=((1/38)*35)+((37/38)*(-1))
=(0.02631578947*35)+(0.9736842105*(-1))
=(0.9210526315)+(-0.9736842105)
=-0.05263157903
如果你对轮盘赌(Americandouble-zero,美国加倍-零式轮盘赌)中一个数字下注1美元,每转一次你预期平均输掉5.26美分。如果你下注5美元,每转一次你预期平均输掉26.3美分。注意:尽管以数量表示的不同的下注数量具有不同数学期望,但是,以数量的百分数表示的下注数量的数学期望总是相同的。
游戏者对一系列下注的数学期望是单个下注的数学期望之和。因此,如果你在轮盘赌中对一个数字赌1美元,然后,对一个数字赌10美元,然后,对一个数字赌5美元,那么,你的总期望为:
ME=(-0.0526*1)+(-0.0526*10)+(-0.0526*5)
=-0.0526-0.526-0.263
=-0.8416
因此,你预期平均输掉84.16美分。
这个原理解释了为什么在赢或输的金额已知时(假定为独立试验过程),试图改变下注规模的系统是注定要失败的。负期望赌注的总和总是负的期望!
实值序列、可能结果及正态分布(EXACTSEQUENCES,POSSIBLEOUTCOMES,ANDTHENORMALDISTRIBUTION)
我们已经看到,抛一枚硬币给出两种可能结果(正面或反面)的概率陈述。我们的数学期望是这些可能结果的总和。现在,我们抛两枚硬币。可能结果如下表:
硬币一硬币二概率
正正0.25
正反0.25
反正0.25
反反0.25
这也可以表示为有25%的机会得到两个正面,25%的机会得到两个反面,50%的机会得到一个正面一个反面。以表格形式表示为:
组合概率
二正零反0.25*
一正一反0.50**
零正二反0.25*
右边的星号说明可以有多少种不同的组合方式。例如,在上面抛两枚硬币时,一正一反有两个星号,因为有两种不同的方式可以得到这种组合。硬币A可以为正面硬币B可以为反面,或者与此相反,硬币A为反面,硬币B为正面。表格中星号的总数就是在抛那么多硬币(两枚)时,你可以得到的不同组合的总数。
如果抛三枚硬币,我们会有:
三正零反0.125*
两正一反0.375***
一正两反0.375***
零正三反0.125*
对于四枚硬币:
四正零反0.0625*
三正一反0.25****
二正二反0.375*******
一正三反0.25****
零正四反0.0625*
对于六枚硬币:
六正零反0.0156*
五正一反0.0937******
四正二反0.2344***************
三正三反0.3125********************
二正四反0.2344***************
一正五反0.0937******
零正六反0.0156*
这里要注意:如果我们把星号作为纵轴绘制成曲线,我们就得出大家熟悉的钟形曲线,也称为正态分布或高斯分布(见图1-1)。
图1-1正态概率函数
最后,对于十枚硬币:
十正零反0.001*
5/8 首页 上一页 3 4 5 6 7 8 下一页 尾页
兄弟财经是全球历史最悠久,信誉最好的外汇返佣代理。多年来兄弟财经兢兢业业,稳定发展,获得了全球各地投资者的青睐与信任。历经十余年的积淀,打造了我们在业内良好的品牌信誉。
本文所含内容及观点仅为一般信息,并无任何意图被视为买卖任何货币或差价合约的建议或请求。文中所含内容及观点均可能在不被通知的情况下更改。本文并未考 虑任何特定用户的特定投资目标、财务状况和需求。任何引用历史价格波动或价位水平的信息均基于我们的分析,并不表示或证明此类波动或价位水平有可能在未来 重新发生。本文所载信息之来源虽被认为可靠,但作者不保证它的准确性和完整性,同时作者也不对任何可能因参考本文内容及观点而产生的任何直接或间接的损失承担责任。
外汇和其他产品保证金交易存在高风险,不适合所有投资者。亏损可能超出您的账户注资。增大杠杆意味着增加风险。在决定交易外汇之前,您需仔细考虑您的财务目标、经验水平和风险承受能力。文中所含任何意见、新闻、研究、分析、报价或其他信息等都仅 作与本文所含主题相关的一般类信息.
同时, 兄弟财经不提供任何投资、法律或税务的建议。您需向合适的顾问征询所有关于投资、法律或税务方面的事宜。
《通向财务自由之路》的作者范K·撒普博士指出:交易成本是影响交易绩效的重要因素之一。很少有交易系统可以创造比它的成本更高的利润。通过外汇返佣代理开户,可以大幅有效的降低交易成本,从而提升获利潜能、改善交易绩效。
风险提示:
金融产品保证金交易存在极高的风险,未必适合所有的投资者,请不要相信任何高额投资收益的诱导而贸然投资! 在您决定投资杠杆类金融产品时,请务必考虑您的经验水平和风险承受能力,投资导致的损失有可能超过存入的资金,因此您不应该以不能承受损失的资金来投资!投资风险不仅来自于杠杆交易,也有可能来自于交易商, 请仔细甄选合规的交易商以规避风险!所有投资者的交易帐户应仅限本人使用,不应交予第三方操作,任何由接受第三方喊单、操盘等服务而导致的风险和亏损应自己承担,责任自负!
兄弟财经是一间独立的咨询服务公司,不隶属于任何交易商,仅向投资者提供信息咨询、降低投资成本的咨询类服务。 兄弟财经不邀约客户投资任何杠杆类的金融产品,不接触投资者资金及账户信息,不提供交易建议,不提供操盘服务,不推荐交易商, 投资者自行选择交易商,兄弟财经仅提供信息咨询,交易商的任何行为均与兄弟财经无关!
投资者在兄弟财经进行任何咨询行为均代表接受和认可上述声明!
所有投资者均为自行选择且直接前往交易商官网进行投资行为(包括提交开户资料和存取资金),兄弟财经不承担客户与交易商之间的交易争议及由交易商问题造成经济损失的责任。 如果您不了解杠杆类金融产品市场的风险,请千万不要参与相关投资交易!
请确保您具备以下条件:专业级的投资知识与能力;可以承受损失的资本(亏损不会导致负债或影响生活)。否则切勿参与杠杆交易。